Interview with Gustaf Mårtensson: Brighter’s project leader at Mycronic

Brighter is a European Project that brings together different academic and industrial partners to develop a new 3D bioprinting technology able to produce human tissues at high speed and with high spatial resolution. This innovative technology is based on light-sheet lithography and an original top-down approach.

Gustaf Mårtensson has a background in fluid mechanics and works at Mycronic, a Swedish high-tech company that has been active in the electronics industry for more than 30 years. He works connecting technological solutions from Mycronic with new applications, and he is also adjunct researcher at Royal Institute of Technology (KTH) in Stockholm, Sweden, within clinical diagnostics. In summary, one of his main tasks is to connect people among them. You can check in this video what his daily life at work looks like! You can also read the interview to get to know more about Gustaf and his participation in BRIGHTER project. Enjoy it!

Can you describe yourself in a couple of lines?

I’m Gustaf Mårtensson and I have a background in fluid mechanics from Royal Institute of Technology in Stockholm, Sweden. I work in technology development finding new technological solutions for our applications, but also new applications for our technologies. I’m also adjunct researcher at Royal Institute of Technology (KTH) in Stockholm, Sweden, within clinical diagnostics.

What is your role/position within Brighter?

I’m Project leader together with Robert Eklund for the BRIGHTER project at Mycronic and I organise the work of all our experts in optics, lasers and data handling.

Could you tell us a little bit about the concrete work you’re involved in inside Brighter project?

Our work is focused on the actual patterning technology together with Göethe Universität in Frankfurt with Francesco, Louise, Sven and Levin. The technology will be able to address individual spatial elements (voxels) in the hydrogel which means that we have to be able to control the laser light in space in time. Mycronic’s part of the device is scanning the laser in one direction and controlling the intensity in time using acousto-optical methods. This will be combined with GUFs module that will scan in an orthogonal direction and house the sample in an appropriate environment.

What are the expected results?

The outcome of our work is the combination of the two modules resulting in the actual patterning device, which together with the work of Cellendes, IBEC and Technion will result in digitally defined patterned tissue.

How do you feel about being a part of this European Project?

This project is one of the highlights of my work week. Sure, it’s challenging, but that’s what makes it fun. I get to work with super talented people at Mycronic and I get to collaborate with great people at GUF, Cellendes, IBEC, and Technion!


Interview with Gabriele Di Napoli: Chemical Technical Assistant at Cellendes

Brighter is a European Project that brings together different academic and industrial partners to develop a new 3D bioprinting technology able to produce human tissues at high speed and with high spatial resolution. This innovative technology is based on light-sheet lithography and an original top-down approach.

Gabriele Di Napoli is a Chemical Technical Assistant in the frame of Brighter Project working at Cellendes. He has a degree as a Chemical Engineer and for the last years he has been applying his knowledge in biomedicine, in the study of tumours or Parkinson’s disease. Now he joined Brighter Project to the develop and prepare photo-crosslinkable hydrogels and study their compatibility with cell culture. You can check here a short video where he briefly shows one of the experiments he usually performs in the lab., and an interview where he explains in more detail some aspects of his professional profile and his role in Brighter project. Enjoy it!

Can you describe yourself in a couple of lines?

Hi, my name is Gabriele Di Napoli, I come, like the name says, from Naples, Italy. I have a degree as a Chemical Engineer. I have been studying Chemistry at the university for two years and after that I started to work at the National Council of Research (CNR) in Naples. In the first year I have been involved in the study of the angiogenesis in tumor development and then I moved to another group studying mouse embryonic stem cells. After 6 years I moved to Tübingen for working for 2 years in a group involved in the study of Parkinson´s disease using iPSCs. Now it has been almost 2 years that I am working at Cellendes as Chemical Technical Assistant.

What is your role/position within Brighter?

I am involved in the study, development and preparation of photo-crosslinkable hydrogels, including their compatibility with cell culture.

Could you tell us a little bit about the concrete work you’re involved in inside Brighter project?

I do the chemical modification of polymers, and the evaluation of the chemical/physical properties using methods like HPLC, spectrophotometry or rheology.

What are the expected results?

We are working towards getting cell-compatible hydrogels that can be formed by light illumination and that can be modified according to the need of different cell types. Another aspect of our work is to make sure that the cells don’t sink to the bottom during the set up of the hydrogels. We also would like to be sure that the set up of the hydrogels is simple and robust enough to enable our project partners to use them safely and reliably.

What is the expected impact of the work you’re doing?

In my opinion this project will provide many interesting results which could be very useful for the scientific community. It is important to be able to fabricate spatially and chemically highly defined bioprinted hydrogels to have better tools to study tissue organization and development. It is almost equally important to communicate the results properly to make sure that this development will be continued in the future.

How do you feel about being a part of this European Project?

Working with different groups around Europe is exciting. For me it is important to have contact with the other partners, to collaborate with them on different experiments and to compare or confirm the results. Furthermore, it is very interesting to get to know people from different corners of Europe and to see how they work.


Discovered two limbal stem cell populations that control corneal homeostasis and wound healing processes

Ruby Shalom-Feuerstein, Anna Altshuler and Aya Amitai-Lange, the workforce of Brighter project at Technion, Israel, led a work that has just been published in the prestigious journal Cell Stem Cell. They describe for the first time the existence of two limbal stem cell populations that have different characteristics and functions in the maintenance of the cornea. This pioneering study opens the doors to the development of accurate treatments for corneal disorders.

Limbal epithelial stem cells (LSCs) are responsible for the renewal of the cornea and up to date, have been seen by the scientific community as rare and slow-cycling cells. Now, a team or researchers from different laboratories at Technion – Israel Institute of Technology have discovered that in fact, the LSCs are composed by two different populations of cells, with distinct characteristics and niches: the quiescent and the active limbal stem cells. The work, led by Ruby Shalom-Feuerstein and signed by Anna Altshuler and Aya Amitai-Lange as first authors, has been recently published in the journal Cell Stem Cell. As experts in the epithelial stem cells field, these researchers from the Laboratory of Epithelial Stem Cells & Pathophysiology at Technion, are in charge to provide the cellular models and scientific knowledge about stem cell biology to BRIGHTER Project and to collaborate on the fabrication and testing of the new skin engineered tissues using the biomaterial scaffolds developed by the bioengineering partners.


The limbus is a ring-shaped zone at the corneal-conjunctival boundary that hosts the corneal epithelial stem cells, that is, the cells responsible for the renewal of old corneal cells and of wound healing response. Thus, a region extremely important for the proper functioning of the eyes.



Combining single cell RNA sequencing and quantitative lineage tracing techniques in mouse, researchers discovered the existence of two populations of abundant limbal epithelial stem cells (LSCs) localized in separate and well-defined sub-compartments, termed the ‘‘outer’’ and ‘‘inner’’ limbus. The quiescent LSCs (qLSCs) are found in the outer limbus zone, co-localize with and regulated by T-cells. qLSCs participate in wound healing and boundary formation. On the other hand, the active LSCs (aLSCs) that reside in the inner limbus are responsible for the cornea homeostasis and renewal.

The observation that there are two populations of stem cells, and that these cells are abundant, challenges the convectional LSC dogma, that considered a single rare LSC population. Nevertheless, this conclusion fits with the equipotent stem cell model, describing epithelial stem cell dynamics in the gut, epidermis and the oesophagus.

The complete atlas of the murine corneal epithelial lineage presented in this work represents a highly valuable tool to understand eyes disorders and help finding preventive and curative treatments for patients that suffer from corneal blindness due to LSC deficiency. In summary, the new data provided in this study pave the way to the development accurate bioengineering tools, as high-quality organoids, better LSC-based therapies, and application of LSCs in regenerative medicine.


Reference article: Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing. Anna Altshuler; Aya Amitai-Lange; Noam Tarazi; Sunanda Dey; Lior Strinkovsky; Shira Hadad-Porat; Swarnabh Bhattacharya; Waseem Nasser; Jusuf Imeri; Gil Ben-David; Ghada Abboud-Jarrous; Beatrice Tiosano; Eran Berkowitz; Nathan Karin; Yonatan Savir and Ruby Shalom-Feuerstein. Cell Stem Cell 28, 1–14, 2021.


Interview with Levin Hafa: Brighter’s PhD student at GUF

Brighter is a European Project that brings together different academic and industrial partners to develop a new 3D bioprinting technology able to produce human tissues at high speed and with high spatial resolution. This innovative technology is based on light-sheet lithography and an original top-down approach.

Levin Hafa is a PhD student working at the Buchmann Institute for Molecular Life Sciences  (BMLS) at Goethe University Frankfurt (GUF) in the frame of Brighter. His is a biologist specialized in molecular and cell biology with experience in organoid and organ-on-chip technology, stem cells, human liver models and microfluidic devices. In this short video we can see one his tasks in the project related with the hydrogels patterning process. In this interview Levin explains his professional profile, formation, and his role in Brighter project. For sure his knowhow will be very important to the success of the project!

Can you describe yourself in a couple of lines?

I am Levin Hafa, a PhD student at the physical biology group of Prof. Ernst Stelzer at the Goethe University in Frankfurt, Germany. I am from Germany and originally from close to Frankfurt as well. After graduating from high school, I studied Biology at the Technical University of Darmstadt (TU) for my bachelor’s with a focus on molecular and cell biology. I then decided to pursue my master’s degree at the TU Darmstadt and joined the M.Sc. Technical Biology program. During my Erasmus semester in Barcelona at Universitat de Barcelona, I was first introduced into Organoid and Organ-on-chip technology. For my master’s thesis, I moved to Berlin and worked with stem cells, human liver models and microfluidic devices at TissUse, a TU Berlin spin-off. Being inspired by Tissue Engineering, Organ-on-chip technology and the 3R principles I was looking for a challenging PhD position in this field of biology. At Goethe University Frankfurt and with the BRIGHTER project in particular, I found the perfect environment to play to my strengths and pursue my interests.

What is your role/position within Brighter?

One of my main tasks within the BRIGHTER project is to develop and validate a patterning mechanism for 3D-bioprinting in the light-sheet (LS) system. Once this task is achieved, I will use this knowledge to complete my PhD project developing a 3D printed human liver model to establish another proof-of-concept for our bioprinting platform.

Could you tell us a little bit about the concrete work you’re involved in inside Brighter project?

For the purpose of creating a patterning mechanism, I need to connect the fields of polymer chemistry, optics, software engineering and cell biology. Specifically, I am designing code, which interprets G-Code, a common 3D Printer language, which is able to transform a 3D CAD rendered model into lines of code and back to a 3D print. I then validate the written code by printing complex three dimensional structures with photosensitive hydrogels. Currently, I am also training to validate the code by printing 3D structures with embedded cells.

What are the expected results?

Once the patterning is established, we expect it to be able to recreate complex 3D structures both protruded and hollow features, focusing special attention on developing thin channels, as observed in human vasculature. Furthermore, we could recreate stem-cell niches, to help a model organ sustenance for a long period of time.

What is the expected impact of the work you’re doing?

My work is especially important for BRIGHTER’s project, since it is the connection between our current LS system and the patterning system developed by our partner Mycronic, allowing for the 3D bioprinting of complex structures, that resemble the human physiology. Additionally, a quick way to 3D-print functional and long-lasting human tissue models would be of great interest for many pharmaceutical companies in terms of toxicological studies and preclinical trials.

How do you feel about being a part of this European Project?

Since I started my PhD in mid-2020, due to the pandemic I was not able to meet my fellow project partners in person yet. But I really enjoy working within an international, interdisciplinary team of scientists and can not wait to visit them.


Members of Brighter project at the Physical Biology Group talk about light-sheet microscopy and bioprinting

Francesco Pampaloni, Louise Breideband and Levin Hafa recently participated in a video to explain the work developed at the Physical Biology Group from the Buchmann Institute for Molecular Life Sciences at the Goethe University Frankfurt (GUF). Their role in Brighter Project is, together with Mycronic, to adapt the light-sheet microscopy technique to 3D bioprinting. In their laboratory they are focused in applying physical models and physical technologies to understand biological systems.

Brighter project is developing a new 3D bioprinting technology based in light-sheet microscopy, and the expected outcome is to have a technology capable of producing engineered human tissues with a high spatial resolution and at a high printing speed. Moreover, the use of the light-sheet microscopy will allow to observe in real time the fabrication of the tissue while it is being printed.

To achieve this ambitious aim, five academic and industrial partners are involved in Brighter project, and people from Goethe University Frankfurt (GUF) have a crucial role in the constructions of the 3D bioprinter equipment. The Physical Biology Group, led by Prof. Dr. Ernst H.K. Stelzer, is a pioneer in the field of Light Sheet Fluorescence Microscopy applied to cell and developmental biology. They employ physiologically relevant cellular models for both fundamental and applied as well as translational research.

Dr. Francesco Pampaloni, Louise Breideband and Hevin Hafa are the researchers from this lab involved in Brighter project. Recently they participated in a video created in the context of the Giersch – Summerschool & International Conference 2021 where they talk about light-sheet microscopy and bioprinting (from 1’48”).

At the Physical Biology Group they apply physical methods, in particular light and fluorescence microscopy to analyze biological specimens in 3D, concretely, in the frame of Brighter project the main tool they are developing is the light -sheet fluorescence microscopy (LSFM).

According to Francesco Pampaloni, the main advantages of this technique is that with a minimal exposure of the samples to light, so they are preserved for a longer time, it is possible to have very fast and precise 3D imaging of a specimen.

On the other hand, and according to Louise Breideband, the importance of using this technique is that is allows to understand the 3D dimension structure of a specimen, specially in the context of tissue engineering and bioprinting, as they focus on generating the microstructures that will accurately mimic the 3D environment. To do so, they 3D print cells in an hydrogel with a technique called light-sheet photopolymerization.


This video was produced by the Frankfurt Institute for Advanced Studies,  funded by the Stiftung Giersch and​​ created by Zeitrausch ( ​

Interview with Aya Amitai-Lange and Anna Altshuler, women’s force of Brighter at Israel

On the occasion of the 6th International Day of Women and Girls in Science, we interview Aya Amitai-Lange and Anna Altshuler to know a little bit more about them. They are the two women that carry out the Bright project at Technion, Israel.

Both Anna and Aya work at the laboratory of Prof. Ruby Shalom-Feuerstein, at the Technion-Israel Institute of Technology. The research of the lab is focused on the study of fundamental and translational research of skin, cornea and pluripotent stem cells. Inside Brighter project, their role is no less than to provide the cellular models, scientific knowledge about stem cell biology and collaborate on the fabrication and testing of the new engineered tissues using the biomaterial scaffold to be developed by the bio-engineering experts.

Aya and Anna are highly qualified scientists, both holding a PhD, and today, on the International Day of Women and Girls in Science, they share with us some reflections about their personal experiences and the role of women in science. Aya is currently a Research Associate and Lab. Manager and Anna is a Postdoc Researcher, both working on stem cell biology in skin and cornea.


When you found out that you wanted to be a scientist?

Aya: After my military service I was searching for the most interesting and suitable profession for me and decided to study Molecular Biochemistry. I found it very exciting to understand the basics of life.

Anna: Already in high school, I was interested in Biology and curious especially stem cells.

Have you encountered any kind of barriers to go in this direction from your family, friends or school?

Aya: Yes. My family encouraged me to pursue an engineering profession, like my father and my big brothers.

Anna: No, my family supported me throughout my entire career.

At some point did you think that being a woman could be a problem in achieving your dream?

Aya: No. I didn’t feel that being a woman is a problem.

Anna: I don’t think so, but the fact is that there are more men as PI than women.

Do you think that your daily/family life has somehow a negative impact on your work due to the fact of being a woman?

Aya: Yes, since I have three young children I find it very challenging to combine my work and my family life. The last year in which my children are at home most of the time due to the pandemic breakout was especially difficult.

Anna: Yes of course, I have a small baby who needs a lot of attention so I can’t work for long hours.

Do you think that initiatives like the International Day of Women and Girls in Science are useful/necessary to make the role of women in science visible?

We both see that in the last few years there is a change in the balance between men and women in senior positions in the Technion. More and more young female scientists get the opportunity to open their own labs and are found to be very successful. Any activity that may support this important change is blessed.

Interview with Elena Martínez, coordinator of Brighter Project

What is your role within Brighter and what it entails?

I am the scientific project coordinator, so I am in charge of supervising the scientific tasks carried out by my team but also of coordinating the different workpackages among the BRIGTHER partners to be sure that deliveries are on time and the project objectives are fulfilled.

Could you tell us a little bit about the concrete work you’re involved in inside Brighter project?

As the main promoters of BRIGTHER new bioprinting concept, IBEC is the in charge of coordinating the full proposal at the scientific and managing level. My role is to propose key experiments that will transform BRIGTHER’s idea from a concept to a first prototype working in a lab environment. Then, I supervise data analysis and interpretation to decide what are the follow-up actions. In practice, at IBEC experiments are carried out by a team composed of two postdocs and one PhD student that I personally supervise.

What is the expected impact of the work you’re doing and of the project as a whole?

The project as a whole is expected to impact in the way the bioprinting process is conceived so far, aiming to improve the main drawbacks of current techniques, which either allow to have high resolution or high printing speed but not both at the same time. BRIGTHER concept will produce a new device based on light-sheet microscopy able to print skin tissue surrogates from custom made polymer materials. High speed printing impacts directly on the cell survival ability, one of the main problems of bioprinting techniques, while high resolution will allow to fine tune the geometry and mechanical properties of heterogeneous tissues such as skin. The work we are performing at IBEC will provide the working parameters of the customized “bioinks” to be successfully used with the BRIGTHER prototype.

In the context of bioprinting of human tissues, what are some of things you’ve found easy/challenging to work with?

Bioprinting human tissues that are functional is a challenging task. Cells have a limited life span when they are outside of their native matrix and are very sensitive to parameters such as shear forces applied. Time is then a crucial point for this task.

Do you have any lessons to share for the future?

I believe the future of bioprinted tissues will come from combining different technological approaches with finely tuned materials that will provide cells with the minimum number of signals sufficient for them to exploit their self-organization capabilities. It will be like mimicking developmental processes but starting with adult cells of the tissues instead of embryonic cells. Probably the use of cell-derived from organoids from adult tissues will be key in this process.

Dr. Elena Martínez obtained her PhD in Physics at the University of Barcelona in 2001 and afterwards she moved to Switzerland to develop a postdoctoral research at the Ecole Polytechnique de Lausanne (EPFL). Back to Barcelona in 2003, her research was funded by one of the prestigious “Ramon y Cajal” Spanish grants at the PCB (Barcelona Science Park) where she was in charge of the technological infrastructure “Nanotechnology Platform”. In 2008 she joined the Nanobioengineering group at IBEC (Institute for Bioengineering of Catalonia) as senior researcher, and from 2013 she leads her own research group at IBEC, the Biomimetic systems for cell engineering lab. Her research group aims to develop biomimetic systems combining engineering microfabrication technologies, tissue engineering and stem cell research. Currently, she is also Associate Professor at the Faculty of Physics from the University of Barcelona.

Brighter project: new light to fabricate biological tissues

© F. Pampaloni, Goethe University Frankfurt, BRIGHTER, 2019

Engineered tissues are key elements for both in vitro and in vivo applications and strongly impact the academy, pharma, and clinical sectors. In the future, laboratory-produced tissues might lead to replace damaged tissues and organs. 3D printing technology is the most used technique to fabricate such tissues, however some challenges must still be solved. The European Project Brighter aims to increase the spatial resolution of the engineered tissues and to speed up the tissue printing process.

Current 3D printers allow researchers and engineers around the globe to print a great variety of objects, with a broad variety of materials, shapes and resolutions. Bioengineering has not lagged this tendency and researchers are now adapting the technique to print human tissues and organs, expanding the limits of a field known as tissue engineering. The success of this approach might represent an enormous advance for the transplantation of organs, reducing the waiting time for patients. Also, it will be a revolution in the drug discovery process and clinical trials, making possible to test new drugs in human organs or tissues instead of using animals or cells in culture. Besides reducing experiments in animals, the use of human tissues is much more adequate and reliable.

The main challenges for the researchers to make this a reality are to produce tissues with the appropriate biological and mechanical properties. Engineered tissues must have a high spatial resolution to recreate the heterogeneous nature of native tissues and must be printed as fast as possible to avoid a decrease in cell viability. The problem is that nowadays none of the 3D bioprinting methods can assure satisfactory levels of both requisites simultaneously.

A new way to print human tissues

The European project Brighter is working on a solution to this problem. Researchers from three leading academic institutions (IBEC in Spain, Goethe University in Germany and Technion in Israel) and two first line industrial partners (Mycronic in Sweden and Cellendes in Germany) form a consortium coordinated by Elena Martínez from the Institute for Bioengineering of Catalonia (IBEC). They are developing a 3D Bioprinting technology able to fabricate tissues at high printing speed and with high spatial resolution by the use of an innovative top-down lithography approach, which is opposite to the bottom-up, layer-by-layer bioprinting methods currently used.

A key aspect of the project is the use of customized hydrogels (materials that provide elastic and hydrated crosslinked network) that mimic the natural extracellular microenvironment of the cells. This extracellular environment, also known as extracellular matrix or ECM, is a key factor in the development of a complex and functional tissue structure and guides cells’ intrinsic self-organizing abilities in the formation of a functional tissue.

Another crucial point is the need to extract relevant information from the 3D cell culture models used in the printing process. To this, Brighter project uses advanced imaging techniques that combine light-sheet illumination and high-resolution digital photomasks to fix the cells into the hydrogels and create 3D structures in a top-down lithography process. The result is the production of complex three-dimensional tissue geometries.

Proof-of-concept: engineering complex skin tissue

The skin is a highly dynamic tissue composed by several layers with particular cell populations and ECM composition. Moreover, vascularized bioengineered skin constructs contain not only the epidermis, but also three essential skin appendages: hair follicles, sebaceous and sweat glands.

Researchers from Brighter combine lithography with cell-laden customized hydrogels to mimic the specific mechanical properties of skin components and its 3D compartments, including wavy niches for stem cell positioning and skin appendix complex architectures. With this technology, researchers expect to print a skin sample of 1 cm2 area and 1 mm thick in about 10 min and with a cell viability of more than 95%, representing a huge improvement of the current printing techniques.

The generation of such a complex tissue structure using the new bioprinting technology from Brighter will represent a real science-to-technology breakthrough towards the realization of on-demand tissue engineering and will strongly impact the academy, pharma and clinical sectors.


3D Bioprinting, engineering, tissues, Bioengineering, skin, health, Brighter Project, Europe

Link to the publication on Cordis

Producing tissue and organs through lithography

Source: Goethe-Universität Frankfurt am Main

EU Project BRIGHTER sets its sights on 3D bioprinting systems with light sheet lithography.

FRANKFURT. The production of artificial organs is a hot research topic. In the near future, artificial organs will compensate for the lack of organ donations and replace animal experiments. Although there are already promising experiments with 3D printers that use a «bio-ink» containing living cells, a functional organ has never been created in this way. A European consortium coordinated by Dr Elena Martinez (IBEC, Barcelona, Spain) and involving the Goethe University Frankfurt is now breaking new ground. The consortium is developing a lithography method that relies on light sheet illumination and on special photosensitive hydrogels that are mixed with living cells.

Bio-printing systems that build up structures layer by layer (bottom-up approach) have considerable disadvantages. On the one hand, the printing process takes far too long, so that the survival chances of the cells in the bio-ink and in the polymerised layers considerably decrease. Furthermore, the extrusion pressure leads to a considerable cell death rate, especially for stem cells. In addition, the resolution of the method, around 300 micrometers, is far too low to reproduce the delicate structures of natural tissue. Finally, it is particularly difficult to integrate complex hollow structures, e.g. blood vessels, into the cell tissue.

«With our project, we want to go the other way round by developing a top-down lithography method,» explains Dr. Francesco Pampaloni from the Buchmann Institute for Molecular Life Sciences (BMLS) at Goethe University. The process works in a similar way to lithography in semiconductor technology. Instead of the semiconductor and the photosensitive layer, which is illuminated by a mask, a hydrogel with photosensitive molecules is used. This is exposed to a thin laser light sheet using the technique invented by Prof. Ernst Stelzer for light sheet microscopy. This leads to the formation of branched chain structures (polymers) that serve as a matrix for colonisation by living cells. The remaining, still liquid hydrogel is washed out.

«This method will enable us to adjust the spatial structure and the stiffness with an unprecedented resolution so that we can create the same heterogeneous microstructures that cells find in natural tissues,» explains Pampaloni. Pampaloni expects that completely new possibilities will emerge for the bio-fabrication of complex tissues and their anatomical microstructures. In addition, the specific properties of the matrix can be used to introduce stem cells into well-defined compartments or to enable the formation of vessels. Further advantages over conventional 3D printing systems are high speed and cost-effective production.

BRIGHTER stands for «Bioprinting by light sheet lithography: engineering complex tissues with high resolution at high speed». Starting in July 2019, the project will be funded for three years as part of the European Union’s renowned and highly selective «Future and Emerging Technologies» (FET) Open Horizon 2020 Programme. BRIGHTER will be financed with a total of € 3,450,000, of which € 700,000 will go to a team led by Dr. Pampaloni in Prof. Stelzer’s Physical Biology Group in the Biosciences Department of the Goethe University. Further partners are the IBEC (Barcelona, Spain, coordination), Technion (Haifa, Israel) and the companies Cellendes (Reutlingen, Germany) and Mycronic (Täby, Sweden).

An image may be downloaded here:
Credit: F. Pampaloni, BRIGHTER, 2019
Caption: Light sheet bio-printing. A hydrogel composed of living cells and photosensitive molecules is deposited in a special cuvette. A thin laser light sheet illuminates the gel following a programmed pattern (green beam). This leads to the formation of 3D micro-structures that reproduce the tissue architecture and function. The remaining, still liquid hydrogel is washed out after the printing process.
Further information: Dr Francesco Pampaloni, Physical Biology, Faculty of Biological Sciences, Riedberg Campus, Phone: (069) 798-42544,,

Current news about science, teaching, and society can be found on GOETHE-UNI online (

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a «foundation university». Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet:

Publisher: The President of Goethe University Editor: Dr. Anne Hardy, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: -49 (0) 69 798-13035, Fax: +49 (0) 69 798-763 12531,

Wissenschaftliche Ansprechpartner:

Dr Francesco Pampaloni, Physical Biology, Faculty of Biological Sciences, Riedberg Campus, Phone: (069) 798-42544,,


New EU project at BMLS

Source: Cluster of Excellence Frankfurt Macromolecular Complexes

The new project “Bioprinting by light sheet lithography: engineering complex tissues with high resolution at high speed” (BRIGHTER) will be funded by the prestigious and highly selective Future and Emerging Technologies EU programme (FET Open, part of Horizon 2020). The EU will support this three year project with a grant of 3,450,000 €  of which 700,000 € will go to the Physical Biology Group of the Faculty of Biological Sciences at Goethe University. The consortium of BRIGHTER includes Goethe University Frankfurt, Germany), IBEC (Barcelona, Spain, consortium coordinators), Technion (Haifa, Israel) as well as the companies Cellendes (Reutlingen, Germany) and Mycronic (Täby, Sweden).

The Frankfurt team, led by BMLS researcher Francesco Pampaloni, plans to realize a bioprinting system based on an innovative light sheet lithography system. “I am very excited by the opportunity to create a breakthrough bioprinting technology within the BRIGHTER project. With outstanding international partners, we have a unique opportunity to build a truly innovative system that prints artificial skin constructs at high speed. BMLS offers a unique interdisciplinary environment and the appropriate infrastructure to carry out this demanding endeavour. I am certain that a lot of synergy with the other BMLS groups will be fostered by BRIGHTER”, says Francesco Pampaloni.

The project will be carried out in Ernst Stelzer’s group in the BMLS and will start in July.